طريقة التعويض لحل نظمة معادلتين من الدرجة الأولى بمجهولين

MOHAMED KHOUKHI 0 التعليقات
بعد أن تعرفنا على طريقة الحل المبياني لنظمة معادلتين، هذا الدرس يتناول طريقة التعويض لحل نظمة معادلتين من الدرجة الأولى بمجهولين. الطريقة جبرية و تعتمد على حساب أحد المجهولين بدلالة الأخر في إحدى المعادلتين و تعويضه في المعادلة الأخرى للحصول على معادلة من الدرجة الأولى بمحهول واحد و بالتالي يمكننا حساب قيمة المجهولين إن كان للنظمة حل :
طريقة التعويض لحل نظمة معادلتين من الدرجة الأولى بمجهولين

1- طريقة التعويض لحل نظمة معادلتين من الدرجة الأولى بمجهولين

مثالحل جبريا في IR² النظمة التالية

1. نحسب x بدلالة y في المعادلة رقم 2 و نحصل على : x = – 3 – 5y.

2. نعوض x بقيمته في المعادلة رقم 1 و نحصل على :
2(–3 – 5y) – 3y = 7
–6 – 13y = 7
–13y = 13
y = –1
3. نعوض بقيمته في المعادلة و نحصل على :
x = – 3 – 5y
x = – 3 – 5 × (–1)
x = – 3 + 5
x = 2
الزوج ( 1- ; 2 ) حل للنظمة السابقة

2- الشرح بالفيديو لطريقة التعويض لحل نظمة معادلتين من الدرجة الأولى بمجهولين

أ- نظمة مجموعة حلولها فارغة

ب- مسألة تؤول في حلها إلى نظمة معادلتين

تعليقات فيسبوك

Google+ Pinterest

0 علقوا على "طريقة التعويض لحل نظمة معادلتين من الدرجة الأولى بمجهولين"

  • يمنع تضمين روابط مباشرة في التعليق.
  • لمتابعة تعليقك حتى نرد عليك بالرجاء ضع اشارة على اعلامي.
  • اذا اعجبك الموضوع "طريقة التعويض لحل نظمة معادلتين من الدرجة الأولى بمجهولين" شارك على مواقع التواصل الاجتماعي.
محول الاكواد